Singly-periodic improper affine spheres
نویسندگان
چکیده
منابع مشابه
Area Distances of Convex Plane Curves and Improper Affine Spheres
Abstract. The area distance to a convex plane curve is an important concept in computer vision. In this paper we describe a strong link between area distances and improper affine spheres. This link makes possible a better understanding of both theories. The concepts of the theory of affine spheres lead to a new definition of an area distance on the outer part of a convex plane arc. Also, based ...
متن کاملSurvey on Affine Spheres
Affine spheres were introduced by Ţiţeica in [72, 73], and studied later by Blaschke, Calabi, and Cheng-Yau, among others. These are hypersurfaces in affine R which are related to real Monge-Ampère equations, to projective structures on manifolds, and to the geometry of Calabi-Yau manifolds. In this survey article, we will outline the theory of affine spheres their relationships to these topics...
متن کاملAffine Lines in Spheres
Because of the hairy ball theorem, the only closed 2-manifold that supports a lattice in its tangent space is T . But, if singular points (i.e. points whose tangent space is not endowed with 2 distinct coordinate directions) are allowed, then it becomes possible to give the tangent space a lattice. Because the lattice is well defined everywhere around the points, the effect of moving around the...
متن کاملThe Singly Periodic Genus-one Helicoid
We prove the existence of a complete, embedded, singly periodic minimal surface, whose quotient by vertical translations has genus one and two ends. The existence of this surface was announced in our paper in Bulletin of the AMS, 29(1):77–84, 1993. Its ends in the quotient are asymptotic to one full turn of the helicoid, and, like the helicoid, it contains a vertical line. Modulo vertical trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 2002
ISSN: 0926-2245
DOI: 10.1016/s0926-2245(02)00100-6